Tag Archives: air compressor working

China supplier Membrane Filter Press Automatic Working High Pressure Air Compressor small air compressor

Product Description

WHY CHOOSE OUR FILTER PRESS?

100% real factory with cheap EXW price;

  1. Reliable Quality
  2. Provides the post-sale service lifelong
  3. Professional Technical Support with solutions;
  4. Free maintenance during the warranty period;
  5. Stable customer supply;
  6. Personalized customization;
  7. Full shipment Experience help to save cost and time;

ZheJiang HangZhou Filter Equipment Co.,Ltd is 100% real factory with more than 20 years history,our factory located in HangZhou City, ZheJiang Province,our mainly products including chamber filter press,membrane filter presss,plate&frame filter press,belt filter press, vacuum belt filter,chemical pumps and so on,we devoted to solid-liquid separation in various industries like waste water treatment,paper industry,oil,sugar,mineral,sewage dewatering and so on. We also have 1 professional production line for filter plate and filter cloth, which realized the independent development of core technologies and components manufacturing industry and build strong strong domestic brands;

WHAT IS FILTER PRESS MACHINE AND HOW IT WORKS?

Filter Press Machine mainly used is solid-liquids separation process
Pressing all plate together Open feeding pump Under pressure of feeding pump and cylinder,the mixed liquid flows through the filter medium (filter cloth), and the CHINAMFG stays on the filter cloth, gradually accumulating on the filter cloth to form a filter cake; (The smallest CHINAMFG particles can reach 5 microns, even smaller based on the feeding material characteristics,we have different filter cloth ) When liquids flow turns small,stopped feeding pump, open filter plate and discharge cake, then ready for the next working cycle;

WHAT KIND OF PRELIMINARY WORK NEED TO DO BEFORE INSTALL THE FILTER PRESS MACHINE? Pipe/feeding pump/foundation building/ mixing tank / electric wire There will have details drawing with guidance that offer from our technical department;

Available options: 
1.Pressing Way : Jack/ Mechanical/Hydraulic ( price different)
2.Plate Type: Chamber Filter Press/Membrane Filter Press/Plate&Frame Filter Press/ Recessed (Gasket Filter Plate);

3.Plate Material: PP filter plate/ Stainless Steel Filter Plate/Cast Iron Plate
4.Other Function : Automatic plate shifter system/ belt conveyor/working platform/washing cloth device/back-flow/back-blow/shaking device 
5.Plate size: 150mm,250mm,390mm,520mm,630mm,700mm,800mm,870mm,920mm,1000mm,1250mm,1500mm,1660mm,2000mm

NOTED: WE CAN CUSTOMERIZE THE FILTER PLATE BASED ON YOUR DRAWING!!!

Automatic filter press & belt coveyor&working plateform

Vacuum belt filter

CUSTOMER CASE
We export to many countries around the world, for example, Russia, Canada, Australia, United States, Malaysia, Singapore, India,Indonesia, Pakistan, Iran, Iraq, Saudi Arabia, Bahrain, Philippines, Vietnam, Thailand, Italy, Kazakhstan, Mongolia, etc

 

FAQ

1. Warranty Period
12 Month except quick-swear parts like filter cloth, during warranty period any parts broken cause of quality problem we will replacement in free charge;
2. How to select model of filter press machine?
There have professional sales manager following the service and help advice the suitable model, please offer the following information as much as possible: Name of feeding material/ capacity/ working hours/ solids content/ solids mesh size/ ph figure and temperature
3.Did the price including feeding pump?
Generally speaking, it didn’t including only if customer require us to offer together.
4.The Pressure of the filter plate?
0.6-0.8Mpa, if need higher pressure, please inform us in advance, we can offer,too;
5.The smallest CHINAMFG particle that can deal with by filter press machine:
Up to 5 CHINAMFG or even smaller;
6.Any technical support?
Of course, except instruction and drawing, our engineer can visit your working site and teach the work how to operate it;
ANY OTHER QUESTIONS, PLS CONTACT US
    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online or Door to Door
Warranty: 1 Year
Type: Sludge Dewatering Machine
Method: Chemical Treatment
Usage: Industrial
Filter Plate Type: Membrane Filter Plate
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China supplier Membrane Filter Press Automatic Working High Pressure Air Compressor   small air compressor China supplier Membrane Filter Press Automatic Working High Pressure Air Compressor   small air compressor
editor by CX 2024-02-02

China Professional High Pressure Amair CT30 Rotary Screw Air Compressor with Air Dryer for Compressor Working best air compressor

Product Description

Refrigerated Compressed Air Dryer (Built-In Pre-Cooler)

Detailed Photos

Principle of working :
The amount of water vapor in the air compression by compressed air temperature determined: in case of compressed air pressure is basically the same, reduce the temperature of the air compressed compression to reduce the amount of water vapor in the air, and the excess water vapor will condense into liquid.
Freezing dryer is according to the corresponding relationship between the saturation water vapor pressure and temperature, use refrigeration device makes the compressed air is cooled to a certain dew point temperature, precipitation containing water, through the steam water separator and electric drainage device will discharge water, so that the compressed air can be dry.
 

Product Parameters

 

     
Model
 
Air Capacity
(Nm3/min)
Voltage
(V)
Fan Power
(W)
Air connector dia Net weight
(Kg)
Lenghth
(mm)
Wideth
(mm)
Height
(mm)
Air flow 
(Nm3/n)
SDLF-0.5 0.65 220 80 G1″ 54 400 560 730 820
SDLF-1 1.2 220 80 G1″ 57 400 560 730 820
SDLF-2 2.5 220 100 G1″ 66 520 640 890 1640
SDLF-3 3.6 220 135 G1″ 79 520 640 890 2670
SDLF-4.5 5.0 220 250 G1-1/2″ 86 540 700 1000 4650
SDLF-6 6.8 220 250 G1-1/2″ 90 540 700 1000 4650
SDLF-8 8.5 220 270 G2″ 99 610 900 1070 5700
SDLF-10 10.9 380/220 260 G2″ 113 610 900 1070 5700
SDLF-12 12.8 380/200 260 G2″ 113 610 900 1070 5700

Note: The above models use plate/plate-fin heat exchangers.

Company Profile

 

Certifications

 

Packaging & Shipping

 

FAQ

 

 

After-sales Service: Ok
Warranty: 1 Year
Flow: Cross Flow
Material Status: Bulk
Drying Medium: Air
Structure: All Kinds
Samples:
US$ 400/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Professional High Pressure Amair CT30 Rotary Screw Air Compressor with Air Dryer for Compressor Working   best air compressorChina Professional High Pressure Amair CT30 Rotary Screw Air Compressor with Air Dryer for Compressor Working   best air compressor
editor by CX 2023-11-03