Product Description
Product Description
engine parts air compressor 612600130177
Weichai Spare Parts Air Compressor 612600130369
Truck spare parts air compressor 612600130408
Howo engine spare parts air compressor 612600130624
trucks engine air compressor 61260013 0571
sinotruck engine air compressor assy. VG157130001
Heavy truck spare parts air pump VG1560130080A
Packaging & Shipping
Product Show
Our products include : Cabin spare parts, Engine spare parts, Gearbox spare parts, Axle spare parts and Electrical spare parts. All parts you need are here.
VGOil filter VGFine filter element
VG1540 0571 1 Primary filter element VG260571253 Belt-water pump
VGBelt-generator WGControl cable
WGCompressor VG14040065 Cylinder head cover
WGFan cover VG156571571 Camshaft bush
WGFRONT RIGHT MUDGUARD
WGFRONT WHEEL FENDER REAR PART LEFT WITH COLOR
WGFRONT WHEEL FENDER REAR PART RIGHT WITH COLOR
WGLEFT WHEEL FENDER WITH COLOR
WGRIGHT WHEEL FENDER WITH COLOR
WGSTEP RIGHT WGSTEP LEFT
WGSHOCK ABSORBER AZSTABILIZER
WGRUBBER STOP(STEEPLE-HEAD) WGWASHER
WGBUSH WGBUSH
WGABOVE BRACKET LEFT WGABOVE BRACKET RIGHT
WGSENSOR FOR CAB LOCK WGT-NOZZLE
WGHOSE WGHYDRAULIC LOCK
WGSHOCK ABSORBER
Cabin parts:
Bumper
Panel
Fender
Front Cover
Side Wing
Head Light
Rear View Mirror
Sun Shade
Hydraulic Lock
Wiper
Shock Absorber
Fog Lamp
WG162111011 Face Cover WGBumper
AZSun Visor WG1642777571/20 Rear View Mirror
AZShock Absorber WGDoor Handle
WGHydraulic Lock WG9719720001/2 Head Lamp
WG9719720005/6 Fog Lamp WG9719810001/2 Rear Tail Lamp
| Chassis parts | Brake Chamber Assembly |
| Transmission parts | Fast Gearbox, Transmission Shaft, Drive Shaft |
| Engine parts | Turbocharger, Piston, etc |
| Cab parts | Shock Absorber, |
Company Profile
HangZhou Xihu (West Lake) Dis. Trading Co., Ltd. is a heavy duty truck and spare parts supplier in China. we mainly deals with spare parts, trucks and construction machinery. Since the company was built, we pay attention to maintaining and developing the long-term cooperation relationship with the customers.
Our company covers an area of 10,000 square meters,including 2,000 square CHINAMFG business operation, 3,200 square CHINAMFG for maintenance and 2,000 square CHINAMFG truck parts warehouse. With a professional team nearly 100 workers with strong sales and maintenance abilities export products to more than 50 countries all over the world, such as Vietnam, Malaysia, Philippine, Thailand, Indonesia, Fiji, Nigeria, Algeria, Egypt, Tanzania, Ethiopia, Kenya, Mali, Congo, Sudan, Cameroon, Iran, Pakistan, Kazakhstan, Peru etc.
We can provide full range of genuine spare parts with best price. For other brands, we have very good relationship with the manufacturers, which can make sure that we are able to provide the spare parts quickly and accurately. The spare parts is now being exported to Russia, Middle East, Africa, South America, Asia countries, etc. we will provide the best service and products, to satisfy the demands of our customers. Sticking to the principle of ” all for our customers”, we warmly welcome friends all over the world to visit and establish business relationship with us.
Our Advantages
1. After getting your order, we will take pictures of every parts for you. Even if you have 500 items.
2. With CHINAMFG parts system,we can get the exact information according the chassis no and assembly nameplate , accurate rate reaches 99%.
3. Our boss is very familiar with the working principle and maintenance of trucks. You are welcome to communicate with us.
FAQ
Q1: What is your payment terms?
A: We accept T/T, WESTERN UNION, PAYPAL, T/T 30% as deposit, 70% before Delivery.
Q2: What is the packing?
A: Carton or wooden case, if you want to put your logo on the packing, we will do it after get your authorization letter.
Q3: When can you deliver products after payment?
A: By Express, Usually take 1-3 days; By Air, usually take 2-3 days; By Sea, usually take 5-15 days.
Q4: What can you do to complete order perfectly?
A: In the beginning, we will communicate with clients in detail to understand what they need. Before packing, we will check the products and send photos to clients. After confirmation, we will packing products well to avoid damage.
Once we get tracking number, we will offer it to clients and keep contact with clients.
Q5: Can you offer sample?
A: Yes , we can offer sample, for small value products, only need to pay shipping cost.
For High value products, you need to pay for it with freight.
| After-sales Service: | Online Guidance |
|---|---|
| Warranty: | 3-6 Months |
| Type: | Engine |
| Certification: | ISO9001 |
| Brake System Parts: | Brake |
| Color: | Black |
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-12-06
China high quality Value Quality and Exquisite Air Compressor Portable Diesel Screw Air Compressor air compressor parts
Product Description
Oaliss’s objective is to be “Your very own system provider”. To fulfill this objective, CHINAMFG pays great attention to customer’s real needs and concerns, then provides feasible solutions. CHINAMFG chooses the most reliable suppliers from the industry and tests its performance before installing on our equipment. Product quality is our paramount goal. In the meantime, we do our best to fill the gaps between price and energy efficiency. Our equipment will be reliable enough to use and the price low enough to purchase. Combined with these distinct features, our high quality and variable products have been accepted by customers from various industries. Oaliss-your very own system provider.
Oaliss-your very own system provider.
Specification
|
Item |
Description |
|
Type |
Diesel portable screw air compressor |
|
Warranty |
1 Year |
|
Applicable Industries |
Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works, Energy & Mining, Food & Beverage Shops, Other, Advertising Company |
|
After Warranty Service |
Spare parts |
|
Local Service Location |
Thailand, Vietnam, Pakistan, Russia, Sri Lanka |
|
Showroom Location |
Thailand, Vietnam, Pakistan, Russia, Sri Lanka |
|
Video outgoing-inspection |
Provided |
|
Machinery Test Report |
Provided |
|
Marketing Type |
New Product 2571 |
|
Place of Origin |
China |
|
Brand Name |
Oaliss |
Oaliss’s portable diesel compressor is best suited for the construction industry. It has become the best friend for customers that need to take the tools to perform their work with them.
Developed in conjunction with energy efficiency, Oaliss’s portable compressor will stand the test of time as well as providing you with the ability that easy to move, easy to operate, and easy to service.
Reliable
Famous brand diesel engine, fitted with double air filters and heavy duty oil filter which could protect the compressor and improve reliability of the whole machine.
Energy efficiency
Smartly auto detect the running status, loading and unloading stage could be easily changed with actual working status, reduce the fuel consumption.
Power expert
Automatically detect the vessel pressure, then adjust the engine speed accordingly. The compressor could provide more volume during drilling operation.
Technical specifications 1
| Com pressor | OLS30 D-7 | OLS40 D-8 | OLS50 D-8 | OLS80 D-7 | OLS100 D-8 | OLS100 D-12 | |
| Working pressure | bar (g) | 7 | 8 | 8 | 7 | 8 | 12 |
| Free air delivery (FAD) | m3/min | 2.5 | 3.5 | 5.2 | 8 | 10 | 10 |
| Compression stages | One stage | One stage | One stage | One stage | One stage | One stage | |
| Approx. outlet temperature | °C | <120 | <120 | <120 | <120 | <120 | <120 |
| Air compressor outlets | inches | 2 x ¾” | 2 x ¾” | 3 x ¾” | 1x¾”&1×1½” | 1x¾”&1×1½” | 1x¾”&1×1½” |
| Engine | |||||||
| Brand | Xichai | Xichai | Xichai | Xichai | Xichai | Xichai | |
| Emissions regulation | CHN | ||||||
| Output at rated speed | kW/hp | 20.6/28 | 26.5/36 | 36/49 | 49/66.5 | 81/110 | 96/130 |
| Displacement | L | 1.6 | 1.5 | 2.4 | 3.3 | 3.9 | 3.9 |
| Fuel tank capacity | L | 90 | 100 | 120 | 120 | 120 | |
| Rated speed | rpm | 2200 | 3000 | 2200 | 2000 | 2200 | 2500 |
| Dim ensions and weight | |||||||
| Length | mm | 1860 | 2450 | 2450 | 2840 | 3380 | 3380 |
| Width | mm | 980 | 1330 | 1330 | 1680 | 1855 | 1855 |
| Height | mm | 1350 | 1500 | 1550 | 1885 | 2175 | 2175 |
| Weight | kg | 500 | 1070 | 1310 | 1710 | 2100 | 2100 |
Technical specifications 2
| Com pressor | OLS130 D-13 | OLS110 D-17 | OLS120 D-8 | OLS130 -17 | OLS130 D-18 | OLS150 D-18 | |
| Working pressure | bar (g) | 13 | 17 | 8 | 17 | 18 | 18 |
| Free air delivery (FAD) | m3/min | 13 | 11 | 12 | 13 | 13 | 15 |
| Compression stages | One stage | Two stages | Two stages | Two stages | Two stages | Two stages | |
| Approx. outlet temperature | °C | <120 | <120 | <120 | <120 | <120 | <120 |
| Air compressor outlets | inches | 2×1/4“ | 1x¾”&1×1½” | 1x¾”&1×1½” | 1x¾”&1×1½” | 1x¾”&1×1½” | 1x¾”&1×1½” |
| Engine | |||||||
| Brand | Xichai | Yuchai | Cummins | Cummins | Yuchai | Yuchai | |
| Emissions regulation | CHN | ||||||
| Output at rated speed | kW/hp | 118/160 | 118/160 | 96/130 | 132/180 | 140/190 | 162/220 |
| Displacement | L | 4.8 | 4.8 | 3.9 | 5.9 | 6.5 | 7.8 |
| Fuel tank capacity | L | 180 | 180 | 180 | 180 | 320 | 270 |
| Rated speed | rpm | 2000 | 2200 | 2500 | 2200 | 2200 | 2200 |
| Dim ensions and weight | |||||||
| Length | mm | 2500 | 3260 | 3380 | 3505 | 3500 | 3460 |
| Width | mm | 2100 | 1950 | 1855 | 1950 | 2060 | 2040 |
| Height | mm | 2200 | 2150 | 2175 | 2190 | 2200 | 2280 |
| Weight | kg | 3200 | 2620 | 2570 | 2700 | 2700 | 2650 |
Technical specifications 3
| Com pressor | OLS150 D-20 | OLS160 D-8 | OLS180 D-20 | OLS185 D-20 | OLS210 D-23 | OLS230 D-25 | |
| Working pressure | bar (g) | 20 | 8 | 20 | 20 | 23 | 25 |
| Free air delivery (FAD) | m3/min | 15 | 16 | 18 | 18.5 | 21 | 23 |
| Compression stages | Two stages | Two stages | Two stages | Two stages | Two stages | Two stages | |
| Approx. outlet temperature | °C | <120 | <120 | <120 | <120 | <120 | <120 |
| Air compressor outlets | inches | 1x¾”&1×1½” | 1x¾”&1×1½” | 1×1″&1×2″ | 1×1″&1×2″ | 1×1″&1×2″ | 1×1″&1×2″ |
| Engine | |||||||
| Brand | Cummins | Cummins | Yuchai | Cummins | Cummins | Cummins | |
| Emissions regulation | CHN | ||||||
| Output at rated speed | kW/hp | 160/215 | 110/150 | 191/260 | 194/260 | 242/325 | 264/360 |
| Displacement | L | 8.3 | 5.9 | 8.3 | 8.3 | 8.9 | 8.9 |
| Fuel tank capacity | L | 320 | 180 | 320 | 320 | 380 | 380 |
| Rated speed | rpm | 2200 | 2200 | 2200 | 2200 | 2100 | 2100 |
| Dim ensions and weight | |||||||
| Length | mm | 3465 | 3580 | 3660 | 3660 | 3660 | 3660 |
| Width | mm | 1800 | 2060 | 1900 | 1900 | 1980 | 1980 |
| Height | mm | 2310 | 2190 | 2310 | 2310 | 2480 | 2480 |
| Weight | kg | 4135 | 2700 | 4290 | 4290 | 5080 | 5200 |
Technical specifications 4
| Com pressor | OLS240 D-8 | OLS300 D-23 | OLS350 D-25 | OLS350 D-30 | OLS470 D-13 | OLS670 D-13 | |
| Working pressure | bar (g) | 8 | 23 | 25 | 30 | 13 | 13 |
| Free air delivery (FAD) | m3/min | 24 | 30 | 35 | 35 | 47 | 67 |
| Compression stages | Two stages | Two stages | Two stages | Two stages | Two stages | Two stages | |
| Approx. outlet temperature | °C | <120 | <120 | <120 | <120 | <120 | <120 |
| Air compressor outlets | inches | 1×1″&1×2″ | 1×1″&1×2″ | 1×1″&1×2″ | 1×1″&1×2″ | DN125 | DN125 |
| Engine | |||||||
| Brand | Cummins | XiChai | Cummins | Cummins | Cummins | Cummins | |
| Emissions regulation | CHN | ||||||
| Output at rated speed | kW/hp | 160/215 | 310/420 | 410/550 | 410/550 | 410/550 | 563/755 |
| Displacement | L | 8.3 | 11 | 13 | 13 | 13 | 19 |
| Fuel tank capacity | L | 320 | 875 | 620 | 950 | 250 | 380 |
| Rated speed | rpm | 2200 | 2000 | 1900 | 1900 | 1900 | 1900 |
| Dim ensions and weight | |||||||
| Length | mm | 3660 | 3675 | 3800 | 4250 | 3800 | 4400 |
| Width | mm | 1980 | 1950 | 2100 | 2100 | 2200 | 2500 |
| Height | mm | 2310 | 2500 | 2325 | 2900 | 2400 | 2560 |
| Weight | kg | 4380 | 7000 | 8100 | 6500 | 8500 | 9500 |
Industrial equipment, printing service, pipelines, power plants, oil&gas, oil refinery, coating, painting,
plastics, steel industry, rubber, mechanical, blow molding, color sorter machine, shipyard, sandblasting,
metallurgy, etc.
To provide the right equipment to you, please send us your detailed requirements.
1 Q: How about the quality of products?
A: We are an authorized distributor of Atlas Copco. Don’t worry about the quality and service.
2 Q: How long is your delivery lead time?
A: If there is stock, the lead time is about 3 working days after we get the payment if need to
be produced, it depends.
3 Q: How about your overseas after-sale service?
A: (1)Provide customers with installation and commissioning online instructions.
(2)Worldwide agents and after service available.
4 Q: Can you accept OEM&ODM orders?
A: Yes, we have a professional design team, OEM&ODM orders are highly welcomed.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-11-08
China Hot selling Single Screw Online Support, Field Maintenance Price Diesel Portable Air Compressor air compressor parts
Product Description
Product Description
Product Features
1. The enlarged plastic air filter is designed to be used for more than 5000 hours with the filter element accuracy of 3 microns. Dry, heavy duty, long life design, easy to clean and replace.
2. SAE standard stainless steel pipe design, low resistance, strong corrosion resistance, superior performance, completely eliminate oil leakage, air leakage, and water leakage problems.
3. Adopting the most advanced host machine in China, adhering to the exquisite manufacturing technology of Germany, adopting the low-pressure and high-efficiency tooth shape with the highest efficiency, the optimized runner design, the big rotor, low speed, high efficiency and high reliability provide your air compressor with a powerful heart, thus achieving efficiency and energy-saving synchronization.
4. The enlarged horizontal structure cooler not only improves the cooler performance, but also facilitates the maintenance, thoroughly solving the unit high temperature problem
5. Increased oil and gas storage tank to ensure the safe and reliable operation.
6. Oversized fuel tank ensures all-day operation of diesel.
7. Oversized fuel filters ensure the cleanliness of diesel entering the engine. Extend the service life of diesel engine.
8. Super large, super strong walking system, strong bearing, and mobile flexibility.
|
Model |
|
HF19/18(J) |
HF20/18(J) |
|
|
Compressor |
Type |
|
Screw two-stage compression air compressor |
Screw two-stage compression air compressor |
|
Gas displacement |
m3/min |
19 |
20 |
|
|
Discharge pressure |
bar |
18 |
18 |
|
|
Drive mode |
|
Direct coupling, diesel engine driven |
Direct coupling, diesel engine driven |
|
|
Oil and gas tank volume |
L |
150 |
150 |
|
|
Lubricating oil capacity |
L |
90 |
90 |
|
|
Diesel engine |
Brand |
|
|
|
|
Model |
|
6CTA8.3 |
6CTA8.3 |
|
|
Type |
|
Liquid cooled, 4 stroke, direct injection |
Liquid cooled, 4 stroke, direct injection |
|
|
Air cylinder QTY |
|
6 |
6 |
|
|
Rated power |
kw |
194 |
194 |
|
|
Rated rotation speed |
rpm |
1900 |
2200 |
|
|
Lubricating oil capacity |
L |
24 |
24 |
|
|
Cooling water consumption |
L |
70 |
70 |
|
|
Fuel tank volume |
L |
380 |
380 |
|
|
Dimension & weight |
Length |
mm |
4200 |
4200 |
|
Width |
mm |
1950 |
1980 |
|
|
Height |
mm |
2100 |
2100 |
|
|
Net weight |
kg |
4000 |
4000 |
|
|
Outlet exhaust valve |
|
1*G2″, 1*G1″ |
1*G2″, 1*G1″ |
|
|
Optional for preheater |
||||
Company Profile
FAQ
1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.
2. How is the quality of your machine?
Our products pass strict quality inspections before they leave the factory to ensure that they are qualified before they are shipped.
3. How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.
4. Do you have after-sales service?
Yes, we have a dedicated service team that will provide you with professional technical guidance. If you need, we can send our engineers to your workplace and provide training for your employees.
5. How about quality assurance?
We provide a one-year quality guarantee for the main machine of the machine.
6. How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 20-25 days.
| After-sales Service: | Online Support,Field Maintenance |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | Diesel Engine |
| Structure Type: | Open Type |
| Samples: |
US$ 26000/Set
1 Set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-10-21