Product Description
| Model | Machine | Diesel Engine | |||||||
| Free Air Delivery | Normal Working | Dimensions | Weight | Manufacturer | Model | Rated | |||
| Pressure | (without towbar) | power | |||||||
| m3/min | CFM | bar(g) | psig | L*W*H(mm) | kg | KW | |||
| WZSCY-3.2/8 | 3.40 | 120 | 8 | 116 | 2263*1590*1543 | 900 | Xihu (West Lake) Dis. | YSD490G | 32 |
| WZSCY-4/13 | 4.00 | 141 | 13 | 189 | 2570*1860*1720 | 1200 | Cummins | QFS2.8-C60 | 45 |
| WZSCY-5/7 | 5.55 | 196 | 7 | 102 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-5/10 | 5.00 | 177 | 10 | 145 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-6/7 | 6.00 | 212 | 7 | 102 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-5/13 | 5.31 | 187 | 13 | 189 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY- 7/7 | 7.00 | 247 | 7 | 102 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY-7/10 | 7.00 | 247 | 10 | 145 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY-7/13 | 7.00 | 247 | 13 | 189 | 3360*2571*2050 | 1700 | QSB3.9-C100-31 | 74 | |
| WZSCY-10/8 | 10.00 | 353 | 8 | 116 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 74 | |
| WZSCY-9/13 | 9.00 | 318 | 13 | 189 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-10/10 | 10.00 | 353 | 10 | 145 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-12/7 | 12.11 | 428 | 7 | 102 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-8/16 | 8.01 | 283 | 16 | 232 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-9/15 | 9.00 | 318 | 15 | 218 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-10/13 | 10.02 | 354 | 13 | 189 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-11/10 | 11.00 | 388 | 10 | 145 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-15/8 | 15.00 | 530 | 8 | 116 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-12/13 | 12.00 | 424 | 13 | 189 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-14/12 | 14.00 | 494 | 12 | 174 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-15/10 | 15.19 | 536 | 10 | 145 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-17/8 | 17.00 | 600 | 8 | 116 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY18/7 | 18.00 | 636 | 7 | 102 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-13/18 | 13.55 | 478 | 18 | 261 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-13/20 | 13.00 | 459 | 20 | 290 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-15/16 | 15.00 | 530 | 16 | 232 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-17/13 | 17.00 | 600 | 13 | 189 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-18/10 | 18.00 | 636 | 10 | 145 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-23/8 | 23.00 | 812 | 8 | 116 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-15/18 | 15.00 | 530 | 18 | 261 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-17/14 | 17.66 | 624 | 14 | 203 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-20/13 | 20.67 | 730 | 13 | 189 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-22/10 | 22.21 | 784 | 10 | 145 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-24/8 | 24.00 | 847 | 8 | 116 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-18/18 | 18.28 | 645 | 18 | 261 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-19/14 | 19.75 | 697 | 14 | 203 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-20/16 | 20.18 | 713 | 16 | 232 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-21/15 | 21.00 | 742 | 15 | 218 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-23/13 | 23.00 | 812 | 13 | 189 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-27/10 | 27.00 | 953 | 10 | 145 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-28/8 | 28.00 | 989 | 8 | 116 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-22/20 | 22.00 | 777 | 20 | 290 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-23/15 | 23.00 | 812 | 15 | 218 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-25/13 | 25.00 | 883 | 13 | 189 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-26/12 | 26.00 | 918 | 12 | 174 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-28/10 | 28.00 | 989 | 10 | 145 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-32/10 | 32.25 | 1139 | 10 | 145 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-33/8 | 33.00 | 1165 | 8 | 116 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-36/7 | 36.00 | 1271 | 7 | 102 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-26/25 | 26.00 | 918 | 25 | 363 | 4700*2100*2900 | 4800 | QSZ13-C550 | 410 | |
| WZSCY-34/25 | 34.00 | 1200 | 25 | 363 | 4700*2100*2900 | 6800 | QSZ13-C550 | 410 | |
| WZSCY-45/10 | 46.38 | 1638 | 10 | 145 | 4715*2160*3200 | 7000 | QSZ13-C550 | 410 | |
| WZSCY-33/35 | 33.00 | 1165 | 35 | 508 | 5000*2200*2900 | 7200 | KTA19-P700 | 522 | |
| WZSCY-39/25 | 39.00 | 1377 | 25 | 363 | 5000*2200*2900 | 7200 | KTA19-P700 | 522 | |
| Note: Skid-mounted type is available. | |||||||||
Wan CHINAMFG Certification
Wan CHINAMFG Exhibition
FAQ
1. OEM/ODM, or customer’ s logo printed is available?
Yes, OEM/ODM, customer’s logo is welcomed.
2. Delivery date?
Usually 5-25 working days after receiving deposit, specific delivery date based on order quantity.
3. What’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
4. How to control your quality?
We have professional QC team, control the quality during the mass production and inspect the products before shipping.
5. If we don’ t have shipping forwarder in China , would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
6. I never come to China before , can you be my guide in China?
Sure , I’m glad to be your guide because our company directly located in ZheJiang , where is the most famous city in China, if you want to come China then we are happy to provide you one-stop service, such as booking ticket, picking up at the airport, booking hotel, accompany visiting factory. It gonna make you an unforgettable memory.
MARKETING NETWORK
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | Unit 1 Year, Air End 2 Years |
| Lubrication Style: | Oil-less |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-01-04
China manufacturer Heavy Duty Offshore/ Onshore Skid Mounted Explosion Proof ATEX Certified Zone 2 Stationary Diesel Engine Direct Driven Rotary Screw Air Compressor for Sale air compressor portable
Product Description
| DENAIR hot sale series diesel portable air compressors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Model | Machine | Diesel Engine | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Free Air Delivery | Normal Working | Dimensions | Weight | Manufacturer | Model | Rated | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Pressure | (without towbar) | power | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| m3/min | CFM | bar(g) | psig | L*W*H(mm) | kg | KW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DACY-3.2/8 | 3.40 | 120 | 8 | 116 | 2263*1590*1543 | 9, China Our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China Q3: Warranty terms of your machine? Q4: Will you provide some spare parts of the machines? Q5: How long will you take to arrange production? Q6: Can you accept OEM orders?
Are there special considerations for air compressor installations in remote areas?Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations: 1. Power Source: Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply. 2. Environmental Conditions: Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation. 3. Accessibility and Transport: Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process. 4. Maintenance and Service: In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment. 5. Fuel and Lubricants: For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered. 6. Noise and Environmental Impact: Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife. 7. Communication and Remote Monitoring: Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting. By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
How does the horsepower of an air compressor affect its capabilities?The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor: Power Output: The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow. Air Pressure: The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force. Air Volume: In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters. Duty Cycle: The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required. Size and Portability: It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications. When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency. Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
What is the role of air compressor tanks?Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions: 1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air. 2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment. 3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation. 4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air. 5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor. 6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow. Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.
China OEM High Pressure Diesel Engine/Electric Motor Portable Rotary Screw Air Compressor with Best SalesProduct Description
Liutech Hole Drilling Diesel Engine Driven Portable Screw Piston High Pressure Air Compressor Application
Packing& Delivery In our after sales service system, We establish perfect control system strictly according to ISO-9000 series, in this system, technology date and problem solve solution and preventive measures will be provided in any maintain project, all the spare parts will be used in new OEM products with installation instructions, packing list, manufacturer’s instruction, qualification and Warranty certificate.
What are the advantages of using an air compressor in construction?Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings. In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
How do you maintain proper air quality in compressed air systems?Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality: 1. Air Filtration: Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness. 2. Moisture Control: Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness. 3. Oil Removal: If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal. 4. Regular Maintenance: Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers. 5. Air Receiver Tank Maintenance: Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system. 6. Air Quality Testing: Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards. 7. Education and Training: Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes. 8. Documentation and Record-Keeping: Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes. By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
What is the purpose of an air compressor?An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor: 1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile. 2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery. 3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items. 4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature. 5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications. 6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants. Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
.webp)
.webp)
.webp)
.webp)
.webp)